Solar Desiccant Air Conditioning

Team: Luis Hernandez, Joel Heywood, Abhishek Kumar, Yzzer Roman Advisor: Dr. Fletcher Miller

Motivation

- Create a solar air conditioner to be used in home.
- Many homes have a potential to use with panels on their rooftops especially with the southern California climate.
- ➢ Harness environmentally friendly source of energy.
- Easy to use and affordable at one time investment.

Solar Air Conditioning System Operation

Air Cycle:

- The solar a/c system does not have a compression cycle which reduces energy consumption.
- Water and water vapor from the air are manipulated.
- Outside air is processed through a desiccant wheel which removes the moisture from the air. This process reduces the air's enthalpy and wet bulb temperature.
- This air with a reduced relative humidity is passed through a humidification cycle that cools the air further and increases the humidity to a comfortable level.

To recover the absorptive properties of the desiccant wheel, solar heated water goes through a water to air heat exchanger to dry away moisture.

Water Cycle:

- ➢ Water is circulated through a solar heat collector.
- The heated water flows through the radiator. To minimize heat loss, the connections and pipe length from the solar collector are minimized.
- The water is stored in a 5 gallon tank and circulated by a pump connected to the system before the solar heat collector.

Solar Collector Heating

Donated Sun Maxx 10 evacuated tube solar collector system.

Cooling

- \blacktriangleright We chose the open cycle desiccant cooling method for A/c.
- > This includes dehumidification of hot air by a desiccant.
- Desiccant cooling is an open heat driven cycle, which uses a desiccant (silica gel) wheel and thermal wheel in tandem to achieve both cooling and dehumidification.
- Design is based on adsorption chiller system.
- The desiccant wheel dries out the air to increase efficiency. Air is cooled in the heat recovery wheel.
- Heat is transferred through contact between the air and rotor material. Cooled further through evaporation humidification.
- Solar power used to heat the air to dry out desiccant wheel.

Testing Procedure

- > PVC piping is used to transport the water through the
 - collector, through the heat exchanger, then to a storage tank.
- The water system runs for around 30 minutes or until the temperature levels out.
- The fans are then turned on and the wheels begin to turn so they will contact both streams of air.

The inlet and outlet temperatures and humidity levels are measured.

Testing Results

- We set up a test box so that we could test what temperature and humidity level changes occur through the heat exchanger.
- We have a fan set up on one side to remove the hot air when it passes through the heat exchanger. With this set up, we experienced a temperature increase and a humidity level decrease. This is also expected for the air passing through the desiccant wheel.

	Temperature (F)	Humidity (%)
20.14		

- Can deliver 18,000 BTU of heating a day.
- Uses glass evacuated tubes with a manifold on top of the solar collector.
- ➤ Capture light from all angles.
- Larger aperture area results in higher solar efficiency.

Inlet	78	43
Outlet	83	38
40 Minutes		
Inlet	75	47
Outlet	85	32

Let's contribute to the environment in every way we can.